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FOREWORD

The work reported herein was conducted by the Advanced Programs and Engineering
personnel of Rocketdyne, a Division of Rockwell International Corporation, under
Contract NAS3-23773 from June 1983 to May 1992. P. Richter, Lewis Research Center,
was the NASA Project Manager. R. Pauckert was the Rocketdyne Project Manager, and
T. Harmon the Project Engineer. N. Gustafson was responsible for the compilation of data
from the contract technical efforts and the preparation of this summary report.
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INTRODUCTION

The objective of the Orbital Transfer Rocket Engine Technology Program, contract NAS3-
23773 for NASA-LeRC, was to define an advanced near term (1990's) space-based Orbit
Transfer Vehicle Engine (OTVE) system and develop the technologies applicable to its
construction, maintenance, and operations. This final report summarizes the work
accomplished during the period from June 1983 to May 1992. It comprised analytical,
design and experimental efforts designated Tasks A through F. This report is not intended
as a comprehensive explanation of this body of work, but as an overview. It summarizes
the previously reported results and findings of each task and subtask. For a complete
listing of final reports containing more detailed information on the various subtasks, the
reader is referred to the bibliography section of this document.

SUMMARY

The OTVE technology contract was conceived in order to develop space based upper stage
engine technologies. Prior mission and vehicle studies had provided general requirements
for such an engine, and previous engine studies provided a departure point for future
engine development. This program was designed to define and scope the technologies
relevant to an OTVE through the mid 1990's and evaluate them through analysis and
component experimentation. The technologies developed and tested were then to be
incorporated into ongoing revisions of an OTVE system design. Following this method,
the OTVE would progress through a series of configurations to include all advanced
concepts evaluated under this contract.

Due to funding limitations, not all technologies identified were fully assessed
experimentally and some studies were halted before all their planned objectives were
completed. All design tasks were completed which allowed the delivery of complete engine
conceptual designs of 15,000 1b and 7500 1b thrust engines with a body of supporting
design and technology requirements data to NASA-LeRC.

The OTVE technology contract was divided into several technology tasks according to
components, and one reporting task. Task A included all monthly, interim, and final
reporting efforts. Task B comprised the turbomachinery studies. Task C consisted of
thrust chamber improvement efforts. In Task D the engine system was revised according



to component advancements, leading ultimately to an engine point design. Various
derivatives of the point design were also generated in parametric studies. Task E dealt with
engine controls, health monitoring and engine maintenance. Under Task F, components
were tested in an engine systems test bed environment.

The advanced turbomachinery studies of Task B included the analysis and testing of several
technological innovations for OTV size pumps and turbines. A two stage partial admission
turbine was tested in several configurations to verify analytical performance predictions and
to reveal possible design enhancements for the MK49-F turbopump. High velocity ratio
diffusing crossovers were fabricated and tested to determine performance and correct any
design deficiencies. The use of soft wear ring seals was studied, with candidate materials
evaluated against heating, wear, and ignition requirements. Advanced bearing concepts
were also analyzed to determine the optimal configuration for the advanced OTVE. Lastly,
a fuel pump rotordynamic analysis taking into account these technologies was also

performed.

In Task C, a ribbed combustor design was developed. A range of promising
configurations of rib and channel geometries were determined analytically. Selected rib
candidates were tested in hot air flows to determine heat enhancement compared to a
smooth walled chamber. Boundary layer analyses were also conducted using laser
velocimeter data from cold flow testing. The results of these tests led to the choice of a
recommended rib geometry. A channel geometry was chosen on the basis of cold flow
laser velocimeter data from tests similar to those conducted for the rib candidates. To
verify the predicted heat enhancement effects, a ribbed calorimeter spool was tested under
hot fire conditions.

Under Task D, the optimum engine thrust, performance and envelope were established for
the NASA specified expander power cycle and for the set of OTV missions as defined by
NASA-MSFC. Optimal nozzle contours were generated and quick disconnects to support
component modularity for the point design engine were designed. Results of a Failure
Modes and Effects Analysis (FMEA), and maintenance and reliability studies were also
incorporated into the engine system under this task. In addition, results from component
studies were included in the engine optimization process in which the engine underwent
three complete design iterations; Phase I, Phase II and the final point design.



The point design itself was also the basis of further studies. It was used as the baseline for
a series of parametric trades on engine thrust, mixture ratio and area ratio in subtask D.6.
The baseline engine was again used to define the control system and the health monitoring
and maintenance operations necessary for a space-based engine in Task E. In addition,
selected components for engine monitoring were developed under Task E, including
combustor wall thickness measuring devices and a fiberoptic shaft monitor. These
monitoring devices were incorporated into preflight engine readiness checkout procedures
developed and evaluated under this task.

In Task F, in conjunction with complementary Rocketdyne efforts, the Integrated
Component Evaluator (ICE) was assembled to demonstrate the performance and
operational characteristics of an advanced expander cycle rocket engine and component
technology concepts in its systems environment. The MK49 turbopumps had previously
been installed on the ICE for component tests to determine start sequence transients and
head versus flow excursions at various power levels. Under Task F, the pumps were
connected to the thrust chamber assembly and an engine sﬁb-systcm checkout was
employed to gradually transition into full engine test operations. A system blowdown was
then performed to determine actual oxygen and hydrogen system resistances and valve
characteristics. This was followed by short transitions into main combustor ignition and
mainstage operation. Extended testing was prevented by a fuel pump anomaly.

A contract schedule showing the progress and completion of each OTV task and subtask is
presented in Figure 1. Some subtask final reports were dated a significant amount of time
after efforts were halted. This was a result of either (1) planned or optional efforts which
were suspended or left unfunded until the time of closure, or (2) a delay in the report

review process.

TECHNICAL OVERVIEW

Under the OTV contract, component study tasks were accomplished concurrently while
working toward current engine system goals and requirements. Because tasks were
conducted in parallel, efforts under given task and subtask numbers did not necessarily
follow each other in order. In the interests of clarity, the task descriptions in this report
also deviate from the letter and number orders designated. The engine studies in Task D
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are first described, after which the turbomachinery improvéments of Task B and the
advanced combustor work of Task C follow. Lastly, the Integrated Control and Health
Monitoring (ICHM) efforts in Task E and the engine testing in Task F are presented. Task
A was an administrative task under which contract reports for all subtasks were written,
and therefore need not be described. -

TASK D - ADVANCED ENGINE STUDY

The Advanced Engine Study, Task D, was originally outlined as a four year effort in which
the OTVE design would be iterated to allow resolution of vehicle/engine integration issues
as well as advanced engine performance, operations and maintenance issues. In Phase I,
comprising subtasks D.1, D.2 and D.3, an engine design was developed which was driven
by vehicle/mission factors, space maintenance requirements and an FMEA. In Phase II,
subtask D.4, the propulsion system requirements for the OTVE were updated and results of
component technology tasks completed to date were used to upgrade the engine design.
Another systems update in subtask D.5 resulted in the engine point design. The point
design was evaluated at off-design conditions and in subtask D.6, trade studies based on
the point design were performed.

Phase I

A logic diagram for the Phase I development of the baseline engine is given in Figure 2,
graphically showing the process used in the first OTVE design iteration. After an in-depth
review of vehicle trade studies and derived requirements provided by four vehicle
contractors, a 7500 Ibf thrust baseline engine was selected as the optimum for OTVE
applications. The missions which drove this selection are listed in Table 1.

Nine prioritized requirements were derived from these missions. The utmost priority was
that the engine be suitable for space basing. Second, it must be suitable for ground basing.
The third requirement was to be man-ratable. Next, the engine had to have high specific
impulse both at high and low thrust. Tank head idle start capability and having no
constraints on cool-down time between burns were also required. Light weight and a size
compatible with servicing came next. The final requirement was compatibility with
aeroassist OTV operation. Characteristics of the engine chosen to fulfill these requirements
are summarized in Table 2 along with the initial engine characteristics determined
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previously in the Orbit Transfer Rocket Engine Technology Program completed in
November 1983, shown for comparison.

After the general engine configuration had been decided, component technologies were
identified which would increase engine performance, reliability or operability. Engines
incorporating various technologies were then analyzed and a baseline was chosen from
these according to system needs, reliability and maintenance standards and development
time limitations. Eleven of the engine variations considered, including the chosen baseline,
are detailed in Table 3. An engine flow schematic of the baseline engine is represented in

Figure 3.

Engine operation studies were conducted on the baseline engine to define and optimize
design parameters. All components and the engine system were evaluated at on- -design and
off-design conditions. Both thrust and mixture ratio variations were investigated. This
was followed by a review of the FMEA and reliability analyses which were conducted
under the ICHM Task E.1. In this review, the impact of the FMEA on engine design was
assessed and methods for FME mitigation and reliability improvements through component
design evolution, engine and cycle design evolution, redundancy schemes, and ICHM
evolution were generated. A flow chart outlining this process is shown in Figure 4.

Concurrently, an initial space-based maintenance philosophy was established and
requirements for its implementation were determined. This maintenance philosophy
centered on the benefits of a modular engine concept and the use of advanced sensors for
health monitoring. An annotated sketch of the OTVE in its modular configuration is shown
in Figure 5. In the modular, ICHM approach, engine servicing would be done on an as-
needed basis determined by the health monitoring systems as opposed to a more frequent
scheduled routine. Space-based servicing such as this requires advanced fluid disconnects
easily operable by an EVA astronaut or robotic manipulator. Several preliminary design
concepts for space operable fluid disconnects were generated during this study. These
concepts were evaluated and ranked based on coupling operation, performance, fabrication,
development, and maintenance.

As part of the advanced cngme system evolution, a comprehensive list of innovative ideas
was identified and evaluated by the respective components specxahsts in order to ascertain
their benefits to the engine design. Many of these concepts were offshoots of the FMEA
review and maintainability studies and thus are integral parts of the space-based
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maintenance philosophy. Some were developed under this contract in component
technology tasks. Others included valve designs and improvements, an igniter design,
retractable nozzle technologies and quick disconnect concepts. Technology plans were
generated in later engine revisions for several of these concepts which were deemed worthy
of further investigation with fruition expected within the time frames of interest.

Phase II

The study logic diagram for subtask D.4, Phase II of the OTV engine design, is shown in
Figure 6. It depicts the process followed in updating the Phase I engine system to the next
level of detail and design confidence. Major advances were made in the engine design, the
maintenance plan and in the space operable disconnect designs.

A survey of current vehicle studies was conducted in order to identify any revisions in the
propulsion system requirements since completion of the phase I study. No major changes
had been established. Only minor revisions affecting gimballing and throttling
requirements were identified for the Phase II engine system. Changes in engine
requirements/characteristics from Phase I to Phase II are listed in Table 4.

Updated heat transfer data generated in the Enhanced Heat Load Thrust Chamber Study
(Task C.I) were reviewed and incorporated into the Steady State Design and Optimization
Code used to generate the engine balance cases. The engine was then reoptimized with a
new heat transfer correlation for the combustor cooling circuit. A slight reduction in the
predicted performance was observed.

The minor changes identified in the Engine Design Update and Engine Concept Studies
described above did not warrant an updated engine layout at the time. Instead, the effort
originally budgeted for the layout was redirected toward component studies in preparation
for the forthcoming point-design engine subtask, D.5. A nozzle contour analysis was
chosen as the study that could be completed with the remaining funds. In this task, a Rao
optimum contour was generated for the fixed nozzle envelope. Results of this more
sophisticated analysis superseded the parabolic contour generated in the Phase I study.

In support of the maintenance plan, a compilation of component lives and life limiters for

critical components including the combustor, nozzle, injector, turbomachinery, and
valves/actuators was generated. Most of the components evaluated met the ultimate life

14
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Table 4: 1990's OTV Engine Characteristics - Phase Il

PROPELLANTS

THRUST, LB
NOMINAL
LOW THRUST
THROTTLING (CONTINUOUS)

THRUST BUILDUP TIME, SEC
BOOST PUMPS

VEHICLE

ENGINE
APPLICATION COMPATIBILITY
STOWED SIZE, IN

ENGINE LENGTH

ENGINE DIAMETER
THRUST VECTOR CONTROL, DEG
INERT GAS REQUIREMENT

VALVE ACTUATION
PURGES

* v = No Change

INITTAL

L02/LH2

10,000-25,000
2,000

NONE

1-2

NONE

LOW NPSH

AFT CARGO CARRIER,
AEROASSIST

55
n

+4

HELIUM
NONE

16

PHASE I  PHASE II
UPDATES  UPDATES
v* v
7500 5000-7500
v 750 (IDLE)
v NOT REQUIRED
v 4
v 4
60
v v
+6 15 X 20
v v
YES YES



goal of 20 hours/ 500 cycles, with some thrust chamber elements requiring inspections and
possible servicing prior to replacement.

In addition, a review of the Space Shuttle Main Engine (SSME) operations and
maintenance manual was conducted with two purposes in mind: (1) to begin to outline the
overall maintenance procedures for the OTVE, and (2) to identify technology requirements
for streamlining space based OTV operations. Figure 7 shows the expected evolution of
OTVE maintenance progressing from 1992 ground based plans to space based plans of the
late 1990's.

With respect to the space operable disconnects for the OTVE, several concepts were
identified. These were ranked in the categories of coupling assembly, coupling
disassembly, misalignment accommodation, assembly verification, damage sensitivity,
preload reliability, fabrication costs and development risk. From the rankings it was
decided which disconnect candidates should be tested. A test plan was generated to
indicate the types of tests necessary to demonstrate the pros and cons of each candidate.
Conducting these tests, however, was not within the scope of this contract effort.

Point Design

Figure 8 shows how the engine point design was developed under subtask D.5 of the OTV
contract. It followed directly from the Phase II design and technology requirements arrived
at previously. In this process, the Phase II baseline system analysis was reviewed to
ensure the requirements and goals given in Table 5 were met. Off-design studies were
also conducted to assess the severity of the ranges of required component operation.
Results of this effort indicated engine requirements and performance goals could be met.

The on-design engine balance for the 7500 Ibf point design engine is shown in Figure 9.
Given are pressures, temperatures and flowrates along with other important engine
parameters. The closed expander cycle chosen is seen to drive its main turbines in series
with a hot gas low pressure fuel turbine and an hydraulic low pressure LOX turbine. The
heat exchanger shown is used for LOX gasification for autogenous tank pressurization and
for tank head idle operation.

Component analyses included studies to optimize the engine system configuration. The
injector/igniter configuration was chosen due to its strong historical precedence and

17
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Table 5: Orbit Transfer Propulsion Requirements and Goals

Requirements

Propellants--fuel, oxidizer

Vacuum thrust

Engine mixture ratio

Propellant inlet conditions

Design criteria

Gimbal

Start cycle

Hydrogen, oxygen

Design point engine thrust level is to be based on an orbit
transfer vehicle total vacuum thrust level of 15,000 ibf with a
minimum of two engines

Design point engine mixture ratio (O/F) will be 6.0 with
capability for operation in the O/F range from 5.0 to 7.0

Design point hydrogen and oxygen inlet temperatures will be 37.8°R
and 162.7°R, respectively. Design point net positive suction head
(NPSH) at full thrust will be 15 ft-lbflbm at the hydrogen pump inlet
and 2 ft-Ibfibm at the oxygen pump inlet

The engine is to be man-rated

The engine must be compatible with aero-assist return of the vehicle
to low earth orbit

The engine must be capable of being space based
Engine gimbal requirements are +20 deg in the pitch and yaw planes

Engine start to full thrust is to be accomplished using
tank-head-idle and pumped-idle operating modes as shown below:

» Tank-head-idle: Propellants are supplied from the vehicle
tanks at saturated conditions. This mode of operation is
intended to settle propellants and thermally condition the engine.

* Pumped-idle: Propellants are supplied initially at saturated
conditions. Pumps operate at a power level sufficient to
provide autogeneous pressurization of the vehicle propeliant
tanks to pump inlet design point NPSH levels.

+ Autogeneous pressurization continues during acceleration to
and at full thrust.

Goals

Vacuum-specific impulse
Vacuum thrust throttling ratio
Weight

Length (stowed)

Service life between overhauls

Service free life

480 Ibf/lbm/s {minimum)

10:1

360 Ibm (maximum total weight of main propulsion system engines)
T8D

500 starts/20-h operation

100 starts/4-h operation

20
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demonstrated high performance. Design and analyses of the boost pumps were also
conducted to the extent necessary to assure the validity of the interface with the high-
pressure fuel and oxidizer turbopumps. Cross-sectional design layouts were completed
showing the primary design features, basic dimensions, critical clearances and materials.

Further results from ongoing component technology tasks B and C were incorporated into
the engine point design. These included the effects of high-velocity diffusing crossovers,
soft-wear ring seals, high speed bearings and a high pressure fuel pump design (Tasks B.2
through B.7), plus enhanced heat loads for the thrust chamber (Tasks C.1 through C.5).
Valve, control and health monitoring advances from Task E were also reviewed and
included. Design improvements for accommodating deep throttling were developed and

documented.

Weights for all components of the point design engine were calculated, including those for
the gimbal assembly, valves, controls, ducting and extendible nozzle mechanism. These
weights are tabulated individually and by category in Table 6.

Trade Studies

In subtask D.6, the point design engine of subtask D.5 was used as the baseline for engine
parametric studies in order to allow optimization of the engine to additional vehicle
configurations and mission objectives. Thrust parametric data, including engine delivered
specific impulse, mass and dimensional envelope, was generated for the advanced engine
configuration over a thrust range from 7.5 kibf to 50 klbf. Engine mixture ratio was held
constant at 6.0:1 for this scan with engine cycle balances being generated at intermediate
thrust levels of 15, 25, and 35 kibf. Detailed heat transfer analysis was conducted at each
thrust level for the combustor and nozzle. Photographic scaling with a constant
length/diameter ratio for the combustor was employed for these parametrics.

Sample Results of the parametric thrust scan are given in Figures 10, 11, 12 and 13 for
chamber pressure, specific impulse, engine length and diameter respectively. The chamber
pressure was primarily influenced by three factors; heat extraction per pound of fuel,
turbomachinery efficiency and coolant circuit pressure drop. Decreasing heat extraction
and increasing turbopump efficiency and combustor pressure drops combined to give a
relatively stable chamber pressure (P¢) after an initial sharp increase. Specific impulse
followed the P trend since the nozzle expansion ratios are fairly constant. Photographic

scaling resulted in steady increases in length and diameter with increasing thrust.
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Table 6: Advanced OTV Engine Weights (lbm)

Thrust = 7500 Ibf

Chamber Pressure = 1576 psia

Nozzle Area Ratio = 970:1

Turbopumps (L.P.) (H.P.)
Fuel 3.2 25.1
Oxidizer 5.0 17.1

Gimbal Assembly
Thrust Chamber

Injector

Combustion Chamber

Fixed Nozzle

Extendible Nozzle - Haynes 214

(Extendible Nozzle - Carbon/Silicon Carbon)

Valves and Controls

Propellant Valves
Control Valves
Controller Assembly
Harnesses and Sensors
Engine Systems
Propellant Ducting
Extendible Nozzle Mechanism
Interface Lines
Pneumatic Control Lines
Ignition System
Heat Exchanger
H2 Regenerator

TOTAL

¥232.8 Weight utilizes carbon/silicon carbide nozzle

23

Subtotals

50.4
28.3
22.1

1.3

159.0

(130.2)*

3.5
30.1
61.6
63.8
(35.0

17.9
11.2
1.8
0.0
4.9

33.0
3.6
14.9
0.8
0.0
3.1
10.6
0.0

261.6

(232.8)*
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In addition to the thrust variations, a parametric scan of on-design mixture ratio (MR) was
conducted. Mixture ratios of 5:1 and 7:1 were investigated to complement the 6:1 MR data
at thrust levels of 7.5, 15 and 50 klbf. Specific Impulse and chamber pressure data from
this study are represented in Figures 14 and 15. The trends seen were similar at all three
thrust levels. Off-design engine cycle balances were also generated at MR's of 5.0:1 and
7.0:1 at the 7.5, 15, 25, 35 and 50 klbf thrust levels. A table of results from this
parametric scan are in Table 7.

On-design parametric data were also generated over a range of nozzle area ratios from the
end of the regeneratively cooled nozzle section to an area ratio of 1200. These parametrics
were generated at each of the five thrust levels addressed above. Output data for these
parametric scans included engine performance, envelope, and weight, and are listed in
Table 8. All said parameters were seen to increase with area ratio as expected.

In the next phase of the program, a thrust level of 20 klbf was chosen under direction from
NASA LeRC for engine requirement variation studies. These studies investigated the
effects of increasing the throttling requirement from 10:1 to 20:1, and requiring the engine
to operate at a maximum MR of 12:1. The methodologies used to gauge these effects and
modify the engine if necessary to achieve these more stringent requirements are outlined in
Figures 16 and 17 respectively.

Initial studies revealed that the baseline configuration which evolved out of the D.1 through
D.5 advanced engine studies was incapable of operating at MR's above 9:1 due to
insufficient power supplied to the oxidizer turbine. This situation was remedied by a flow
circuit change and by incorporating additional LOX turbine bypass reserve at the on-design
operating point. The flow circuit was altered by mixing the fuel turbine bypass flow with
the fuel turbine exit flow after passing through the heat exchanger instead of mixing this
flow with the remainder of the hydrogen just upstream of the injector. The new engine
flow schematic is depicted in Figure 18. The schematic change, together with the increased
on-design LOX turbine bypass, gave the LOX turbine enough power to operate at MR's up
to the desired 12:1 ratio.

In addition to the off-design engine cycle balances generated at the extreme conditions,
individual component analyses were conducted to identify potential problems encountered
at the high MR and deep throttled operating points. Pump operating points were plotted on
head-flow diagrams to verify stability. Propellant thermodynamic properties through the
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engine were plotted on T-S diagrams to ensure two phase transition problems were
avoided. Valve resistance ranges and system pressure drops were checked for violation of
accepted limits. Thrust chamber and nozzle material temperatures were also tracked to
ensure structural integrity.

Having defined the engine system, necessary technologies to be developed before the
OTVE could be put into operation were identified. Demonstration requirements for these
technologies were listed. Manrating issues and impacts to the engine system were also
addressed.

TASK B - TURBOMACHINERY TECHNOLOGIES

In Task B, the most promising turbomachinery technologies for OTV sized engines were
explored. These included two stage partial admission turbines (subtasks B.1 and B.4),
high velocity ratio diffusing crossovers (subtask B.2), soft wear ring seals (subtasks B.3
and B.5), advanced bearing concepts (subtask B.6) and a fuel pump rotordynamic analysis
(subtask B.7).

Two Stage Partial Admission Turbines

Performance of the small, high power, low pressure ratio turbines required for the
expander cycle upper stage rocket engines of the future is crucial to meeting overall OTVE
performance requirements. For this size high pressure fuel pump, a two stage turbine was
found to be the best compromise between performance and life of the turbopump. Analysis
found that partial admission also improved turbine performance by increasing the hub to tip
ratio. The OTVE two stage partial admission turbine was designed as two single stage
subsonic impulse stigés with the kinetic energy of the first stage rotor discharged directly
into the second stage nozzle to minimize staging losses. Because very little data on this

turbine type existed, full scale testing was planned in subtasks B.1 and B.4.

The objectives of these subtasks were to (1) verify the two stage partial admission turbine
analytical predictions by conducting laboratory tests using ambient (room temperature)
gaseous nitrogen, (2) update analytical performance prediction methods for future designs
of similar low thrust engine turbines and (3) provide baseline data for comparison with the
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OTV MK49-F turbine for possible performance enhancement by minor hardware
modifications.

Turbine design requirements were derived from an expander cycle engine balance using the
MK49-F turbopump. In constructing the test apparatus, all available MK49-F turbine
hardware, such as the turbine and exhaust housing, was used for ease of comparison and
shortened fabrication time. In addition, most of the tester hardware was machined from
aluminum to avoid design and fabrication complexities.

A layout of the turbine tester is shown in Figure 19 with major features labeled. To
minimize test turnaround time and maintain good test-to-test performance correlations, a
movable second stage nozzle remote-controlled system was devised to change the first to
second stage nozzle angulation during a single test period. Nozzle arcs of admission were
changed by plugging, or unplugging, discrete numbers of nozzles by the use of silicon
rubber. Even numbers of nozzle passages were plugged 180 degrees apart from each other
to prevent radial loads. Instrumentation locations to measure performance parameters on

the tester are given in Figure 20.

A total of thirteen tests were conducted in three phases accumulating approximately 36
hours of run time on the rotor assembly. The original test matrix is presented in Table 9,
but testing deviated somewhat from this plan to accommodate hardware and schedule
modifications. The test objectives were still satisfied, but a slightly lesser range of nozzle
angulation was tested, very low arcs of admission were investigated, and the laser
velocimeter tests were canceled due to budget and schedule constraints.

In the new test series, nozzle angulations from plus 40 to minus 30 degrees from the
designed nozzle angulation (40 degrees arc separation) were tested. First stage nozzle arc
of admission variation ranged from a high of 37.4 percent (10 nozzle passages - 5 per side)
to a low of 6.9 percent (2 nozzle passages - 1 per side). Second stage arc of admission
varied from 84.4 percent (26 nozzle passages - 13 per side) down to 12.9 percent (4 nozzle
passages - 2 per side).

An example of the resulting efficiency vs. velocity ratio (U/Co) graph generated for 0
degrees nozzle angulation is given in Figure 21. A sample equivalent flowrate vs.
equivalent pressure ratio graph for the same test conditions is shown in Figure 22,
Performance of the turbine at design conditions was approximately 7.9 percent higher than
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originally predicted, probably attributable to a higher loss predicted for turbine windage
losses. Effects and trends of nozzle arc of admission variation were generally as expected
with the lowest performance coincident with the lowest arc of admission. In addition, large
deviations from the design nozzle angle setting produced the lowest performance. Turbine
pressure ratio variations (1.3 to 2.0) had little effect on the overall turbine performance.

The data generated in this subtask substantially verified the turbine performance prediction
methods used at Rocketdyne. It was also found that minor nozzle to nozzle angulation
changes could be made to attain the highest performance of the MK49-F turbine according
to the test results.

High Velocity Ratio Diffusing Crossovers

Multistage pumps require the use of crossover passages to convey the fluid from the exit of
one impeller to the inlet of the next. To develop the high discharge pressure necessary for
the advanced expander cycle OTVE, a high impeller exit velocity was required. A relatively
low velocity, however, was required at the inlet of the next impeller for the best overall
performance. The solution was a large diffuser inlet to outlet velocity ratio through the
crossover, such as in the MK49-F pump, a component of the 15,000 Ibf OTVE which uses
seventeen diffusion passages at a velocity ratio approaching the diffusion limit for stable
design of 6.23.

With the MK49-F high diffusion rate, boundary layer flows had to be carefully controlled
to preclude stall while operating over a wide range of pump flows. The design was based
on advanced analysis anchored by tests of stationary two dimensional diffusers with steady
flows. To accurately assess the design, however, a more accurate simulation of the
impeller flow was necessary to correctly evaluate the unsteady, non-uniform flow fields
and potentially large inlet boundary layers.

Subtasks B.2 and B.4 further investigated the performance of high velocity ratio diffusing
crossovers used in the first and second stégeé of the MK49-F high pressure fuel
turbopump. The crossover portion of this pump is pointed out in Figure 23. The different
crossover sections are also labeled in Figure 24. With the diffuser inlet conditions
generated by a scaled up model of the MK49-F inducer and impeller, the performance of
these pumping elements and the high velocity ratio diffusing crossover were accurately
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determined using water and air as the pumped fluids. The air tests were included to obtain
performance data over a wide range of Reynold's number.

These performance surveys were planned in order to verify the design of the high velocity
ratio diffusing crossover, and correct any design deficiencies. Since the MK49-F was
tested prior to the completion of this test program, the data from the MK49-F was used as a
comparison for the water and air test data.

Existing SSME HPFTP tester hardware was used to save design and fabrication costs. A
scaled MK49-F inducer, impeller, and diffuser crossover system, were designed,
fabricated, and integrated into the tester. Additional costs were saved by fabricating the
new crossover tester components from aluminum, thus minimize machining complexities
and procurement costs. A layout of the crossover tester showing instrumentation locations

is depicted in Figure 25.

A total of nine tests were conducted. The first two tests of the diffusing crossover were
conducted in air, while the remaining seven tests were conducted in water. Both, the air
and water tests were conducted at 6322 rpm. A test matrix defining these experiments is
presented in Table 10.

In air, the head versus flow (H-Q) test data determined that the upcomer diffuser in the
crossover was stalled for all the flow conditions attempted. The stall was caused by
increased boundary layer blockage due to the low Reynold's number resulting in the
impeller discharge flow entering the diffuser inlet at an angle and velocity which would
produce a flow separation in the diffuser. Air test data compared well with the analytic
predictions and MK49-F hydrogen data for the impeller and inducer head performance,
clearly showing that the stall was in the diffuser.

H-Q tests in water, from 65 to 140% of design flow, were conducted. The overall stage
head measured in these tests was only 4% lower than the prediction as seen in Figure 26.
Again, the performance of the inducer and impeller were compared with the available
resources. During the H-Q tests, the upcomer diffuser stall point was determined to be at a
somewhat lower flow than predicted, and the hysteresis region was clearly evident. The
head loss during stall was not severe, which was indicative of a leading edge stall
characteristic. Internal pressure distributions were also examined to evaluate the inducer,
impeller, and various positions within the diffuser crossover system. Suction performance
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Figure 25: High Velocity Ratio Diffusing Crossover Tester Instrumentation
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Table 10: High Velocity Ratio Diffusing Crossover Test Matrix

P T R R A R L L e A LA R R R R R R A R R

| TEST | TeST | TEST | FLOM | TEST ]
[ NO. ] TYPE | FLUID | (GPM) | DESCRIPTION
| .................. P R e R Ry R
I | I | | , I
T B CHECK QUT | H20 | 582 |ESTAB AXIAL LOAD |
I ! | I I |
| 2 | HEAD vs. FLOW | H20 | 408-694 | H-Q W/ PROBE |
I I I I I I
| 3 |H-0 STALL MAPPING | H20 | 233-408 | HQ 60-90%a |
I I I ! I |
| ¢ | CAVITATION | H20 | 582 | NPSH 3@ 100%Q |
I | I ! I |
| CAVITATION | W20 | 640 | NPSK @ 110% |
[ | [ ! I I
| & |  CAVITATION | H20 | 698 | NPSH 3@ 120%0 |
I I | ! | [
7 CAVITATION | H2O | 523 | NPSH @ 0% |
| | I I | I
| 8 | CAVITATION ] H20 | 465 | NPSH @ 80%@ |
I | I I | I
| 9 | CAVITATION ] H20 | 407 | NPSH @ 70%Q |
I I I ! I I
| 10 | CAVITATION ] H20 | 349 | NPSH @ 60%0
I P I ! I |
| 11 |PROBE SURVEY POSH#1| H20 | 408-694 | HQ 70-120%@ |
I ! | I | l
| 12 |PROBE SURVEY POS#2| H20 | 408-694 | HQ 70-120%Q |
| | I | | I
| 13 |PROBE SURVEY POS#3| H20 | 408-494 | Ha 70-120% |
I | I | !
[oesmmeemammmerssmennsnciooeoeoonot et onntan, -
| TEST | TEST | TEST | FLOM | TEST |
| NO. ] TYPE | FLUID | (CFS) | DESCRIPTION |
' ........................................... Ry sseanse desscsansesnmas L L LT PR PR R
I I I I |
HEAD vs. FLOW | AIR  |0.91-1.54| H-Q W/ PROBE |

* These tests were later deleted
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tests from 80% to 124% of design flow were conducted, which established the minimum
inlet Net Positive Suction Head (NPSH). The performance was lower than the ideal
potential, but a lower performance was expected with the design characteristics scaled from
the smaller MK49-F. Test efficiencies vs. predicted values are shown in Figure 27. The
performance of the tester exceeded the minimum design requirements of the MK49-F

turbopump.

The test data showed 95% of the overall diffusion being accomplished by the upcomer
portion of the crossover passage, as predicted. By calculating the required diffuser inlet
boundary layer blockage to match the test data and using the Loss Isolation program to
determine the vaneless area diffusion, the mean pressure recovery coefficient from the test
data compared favorably with the predictions.

The technique generated to analyze the data will be beneficial for the design and analysis of
future diffusing crossover passages. The data generated in this test program verified the
methods used at Rocketdyne to design and predict the performance of pumping elements
and high velocity ratio diffusing crossovers. The data generated will also be of value in
further anchoring the predictive codes of other designs.

Soft Wear Ring Seals

The Soft Wear Ring Seal Development Program in subtasks B.3 and B.S provided a
systematic and comprehensive technical approach that explored new polymeric materials for
cryogenic turbopump seals. The benefits of soft seals with their tighter clearances is
evident from the MK49-F performance data in Table 11. The project plan included a total
of five technical and one reporting efforts. The subtask B.3 efforts included:

1: Technology Assessment and Requirements Definition
2: Material Selection, Design, and Test Plans.

Seal locations within the OTVE pumps are likely to correspond to those in the MK49
turbomachinery. Seal positions for the MK49 fuel pump are shown in Figure 28 and
MK49 oxidizer seal positions in Figure 29. Based on the operational requirements passed
down from the OTVE systems and the mechanistics listed in Table 12, the turbopump
dynamic seal environment required that the soft seal materials maintain certain mechanical,
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Table 11: MK49-F Seal Clearance Influence on Performance

IMPELLER AND INTERSTAGE PUMP rumMp HORSEPOWER TURD DRG BAL PISTONM
RADIAL SEAL CLEARANCE HEAD EFF. FLOW FORCE RANGE
IN. FT. % GPM POUNDS
0.002 144,856 59.2 1885 14.2 13,606
0.003 130,053 56.0 1880 13.0 12,801
0.004 132,347° 54.4 1074 11.4 12,042

NOTE: ROTATING SPEED = 110,000 RPM

DESIGN FLOW RATE
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thermal, and chemical characteristics to survive. The major Criteria and their importance
are listed in Table 13.

Table 13: Major Seal Material Properties Needed

PROPERTY IMPORTANCE
LOW COEFFICIENT OF FRICTION LOW HEAT GENERATION
DUCTILITY (3 - 5%) ABSORB IMPACT, WITHSTAND
THERMAL SHOCK

COEFFICIENT OF THERMAL EXPANSION  AS CLOSE AS POSSIBLE TO
HOUSING MATERIAL

TENSILE STRENGTH 10 - 20 KSI AT CRYOGENIC
TEMPERATURE TO
WITHSTAND SEAL PRESSURE
GRADIENT, FLOW INDUCED
SHEAR LOAD

Initial candidate soft seal materials and their material properties were summarized from tests
conducted during and prior to subtask B.3. Based on the results of these tests, a down-
selection was conducted, isolating those materials with superior properties in the various
turbopump seal applications that had been identified. These selected candidate seal
materials included Vespel SP211, Polybon MT747, and Torlon 4301. Kel-F was used as
the baseline material for comparison, having already been implemented in the SSME LOX
pump seal.

A soft seal Energy Dissipation Factor (EDF) model was formulated which rated these new
seal materials based on their mechanical and thermal properties, the particular seal location,
and the particular fluid medium. Subtask B.3 was completed when the soft seal test plan
and the low speed and high speed friction and wear test rigs were designed.

Due to the sensitivity of LOX cnvironments to heat generation, the test program focused on
materials that were identified for a liquid oxygen environment. The test program was to
establish the basic chemical compatibility and mechanical survivability attributes of the seal
materials. To fully evaluate these candidate materials, autogenous ignition tests, promoted
ignition tests, LOX impact tests and low speed friction and wear tests were conducted at
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both high and low pressures. Additional tests were planned to evaluate liquid hydrogen
turbopump and gaseous hydrogen expander cycle turbine configurations, however they
were only partially completed due to test hardware malfunctions.

Upon completion of the technical effort of subtask B.3, the plans for subtask B.5 were
formalized. The efforts performed during subtask B.5 included:

3: Hardware Fabrication
4: Testing
5: Data Correlation.

The LOX compatibility test series presented above, including the auto-ignition, promoted
ignition, and LOX impact tests were conducted in the test rigs pictured in Figures 30, 31
and 32. These test series identified Kel-F, Vespel SP211, and Polybon MT-747 as
demonstrating sufficient resistance to reaction. Torlon 4301 showed more reactivity during
the LOX impact tests at 2000 psig, reaching only the 4 kg-m level, while all the other
materials achieved at least the 8 kg-m level. Torlon 4301's poorer performance in these
tests were grounds for eliminating testing with this material in the low speed friction and
wear tester. '

An existing frictional heating tester was modified and used to conduct the low speed
friction and wear tests at the White Sands Test Facility (WSTF). This tester is pictured in
Figure 33. Two types of friction and wear tests, static friction and running friction, were
conducted to simulate the characteristics of the different seal operation approaches. A total
of 28 tests were conducted at PV products (normal contact pressure times the sliding
velocity) ranging from 4,000 to 21,000 psi-ft/sec. These low speed tests were used as a
demonstration for the new seal materials as well as a concept verification. Material wear
rate, debris size, and frictional heat management of the seal were of particular interest.
High speed tests were planned as a final verification of the soft seal concept, but these
efforts were not pursued under this contract.

To better correlate the interactions at the rubbing surface from the low speed test data, a 2-D
axisymmetric frictional heating model was constructed. Temperature distributions
measured within the seal specimen were compared with the output of the model. By
adjusting the frictional heat rate input in the model, the seal temperature profiles were
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matched. This model was used to help isolate the energy dissipation mechanisms
consistent with a rubbing contact.

Wear track depths were measured in the seal specimens, and the wear rate correlated with
the surface temperatures predicted by the frictional heating model. Specific wear rates were
also calculated from the wear track data and were compared with the literature. The specific
wear coefficients calculated from the low speed friction and wear tests were an order of
magnitude greater than the literature, possibly due to the higher sliding velocities (four
orders of magnitude greater) and a highly oxidizing environment.

In general, the data generated by this program helped strengthen the understanding of the
rubbing environment within a stationary polymeric seal ring. Due to the unique differences
between the polymeric materials used in this program, interesting and varied heat
generation and dissipation mechanisms were witnessed. Kel-F produced higher wear and
essentially no internal temperature rise, while Vespel SP211 produced low wear and higher
internal temperatures. The chemical complexity and differences between the polymers
selected increased the difficulty in predicting the specific operational (PV) limitations of
these materials. Most importantly, the friction and wear test program demonstrated that an
interplay existed between the thermal, mechanical, and chemical characteristics of the soft
wear ring seal materials. A quantitative method, however, could not be implemented to
isolate the contributing mechanisms with the available data.

Advanced Bearing Concepts

The requirements for the OTV engine were derived from NASA-sponsored vehicle and
engine studies. To achieve these requirements and the engine operating needs, the OTV
Fuel Turbopump may be required to operate at nearly 230,000 rpm. In subtask B.6,
conventional rolling element, hybrid, foil, and hydrostatic bearings were evaluated against
turbopump imposed speed, as well as load, cryogenic environment, engine life and duty
cycle requirements. The results of this study are summarized in Table 14.

This evaluation led to the selection of the hydrostatic bearings as the prime candidate design
for the OTV Fuel Turbopump. Subsequently a program was conducted to design,
fabricate, and assemble a hydrostatic bearing tester. A diagram of this bearing tester with
major elements labeled is shown in Figure 34. It was planned to test the candidate bearings
in a follow on program to quantify bearing wear rates and fluid flows required for the
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selected hydrostatic bearing designs. Budget constraints, however, limited the scope of
work at the time to the fabrication of the tester.

Rolling element bearings were evaluated for the OTVE high speed fuel turbopump with a
design point shaft speed of approximately 200,000 rpm. Life calculation results of 5 hours
for an appropriate bearing size of 25 mm, fell short of the OTVE requirement of 20 hours.
The DN speed limit value of 1.8 x 106 also fell short of a DN goal of 5.0 x 106 for the
turbopump. These limitations excluded rolling element bearings from further

consideration.

Hybrid bearing configurations offered improved life (50 hours); however, these
configurations had larger turbopump cross sectional requirements in both the radial and
axial directions. This space requirement made these bearings less suitable for use in the
small diameter OTVE high speed fuel turbopump. The rolling element bearing in the
hybrid combination has the capability of reacting to transient axial loads but will continue to
rotate and generate parasitic losses during steady state operation.

Foil bearings were reviewed for applicability to the OTVE high speed fuel turbopump. The
four types of foil bearings reviewed include the multi-leaf type, the bumper supported, the
tension type, and the multi-layer single leaf. The multi-leaf bearing has been applied in
various aircraft for air-conditioning and heating needs and has gained the most experience
to date. Under cryogenic turbomachinery conditions, however, there has been no
experience with foil bearings. Additionally, the impact of foil bearings on minimal
clearance soft seals remains undefined.

Significant attributes made the foil bearings attractive however. The foil bearings operate in
a bath of fluid and generate little heat after lift-off from the foil and as a result require little
cooling and minimal process fluid replenishment. They have demonstrated long life and
reliability, and simplified rotordynamics. The characteristic foil bearing aspect ratio
(journal diameter divided by bearing length approximately equal to one) also results in
shafts of large diameter and increased shaft stiffness which could result in simplified
rotordynamics. Foil bearings are worthy of investigation as turbopump bearings; however,
uncertainty about their rotordynamic characteristics prompted the recommendation of a
follow-on program to evaluate their application into high speed turbopumps pumping liquid
propellants.
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Hydrostatic bearings offer predictable stiffness and damping and unlimited DN. Bearing
life, while predicted to be infinite, needs to be quantified and process fluid flow
requirements need to be defined. The predicted attributes of long life, high reliability and
operational experiences resulted in the selection of the hydrostatic bearings for use in the
OTVE High Pressure Turbopump. Material candidates were chosen for future evaluation
and testing and are listed in Table 15.

Fuel Turbopump Analysis

In subtask B.7, the High Pressure Fuel Turbopump (HPFTP) for the OTVE was sized and
analyzed. A preliminary design of the turbopump was generated, taking into account the
wide range of conditions corresponding to the engine operating parameters established in
subtask D.5. A layout of the HPFTP is shown in Figure 35. A rotordynamic analysis was
also performed to characterize pump operation over the entire range of expected loads and

speeds.

First , the number of pump stages was decided and the impellers were sized to the required
flow for the 7500 Ibf engine. Performance was then calculated, incorporating effects of
design elements such as hydrostatic bearings, high velocity diffusing crossovers and soft
wear ring seals. Suction performance was also derived and was found to be well within
the limits set by the available NPSH from the pressurized tanks.

The fuel turbopump was analyzed at off-design conditions as well as on-design. It was
determined that the pump could achieve the required throttling level and remain within the
stable operating range. Pump characteristics resulting from mixture ratio variations were
also investigated and found to be within operational limits.

The rotordynamic analysis performed on the HPFTP included several finite element beam
models. The models consisted of variations of the preliminary configuration, each
including an inducer, four pump stages, two turbine stages, two hydrostatic bearings and
the seal packages. Stiffness, damping and cross coupling for the seals and bearings were
determined. From these models, natural frequency and stability maps were generated
showing the critical speeds and mode frequencies. The models were refined until all critical
speeds and stability modes were at safe values.
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TASK C - COMBUSTION CHAMBER TECHNOLOGIES

In order to increase chamber pressure and in turn increase engine performance, more heat
energy needed to be extracted from the OTV coolant circuit to drive the turbomachinery.
Increased heat energy maximizes the efficiency of turbomachinery operation and reduces
the size and weight of the engine. In the past, increased heat energy requirements of the
turbopumps required longer combustion chambers. Size limitations created the need for a
different method to increase heat extraction. This requirement was fulfilled by increasing
the area exposed to the hot-gas by using combustor ribs. The ribs increased the total area
exposed to the hot-gas by 80%, and thus increased the enthalpy in the coolant working
fluid. Task C efforts proved the validity of the ribbed combustion chamber concept,
determined the optimal rib and channel configuration, and tested the configuration to verify
the heat load enhancement factor predicted.

Ribbed Wall Flow Tests

The overall objective of subtask C.1 was to assess the use of ribbed walls to increase the
heat extraction capability of an expénder cycle engine combustor. Supporting objectives
were: screen appropriate rib configuration candidates; evaluate flow characteristics around
the candidate ribs; compare the designs under hot gas conditions; and select the best
designs for hot-fire test evaluation..

A matrix of candidate rib configurations was formulated based on preliminary studies
conducted at Rocketdyne. The matrix featured ribs with varying heights, widths, pitches
(spacing), and base geometries (sharp or curved). These candidates were screened
analytically for heat transfer enhancement, boundary layer risk, producibility, and
structural/life considerations. The required heat transfer and boundary layer analyses were
conducted with two dimensional computer models using a uniform heat transfer coefficient
for all surfaces. Results of these analyses for the candidate matrix and the weighting
factors used are given in Table 16.

Rating of each rib type with respect to heat transfer enhancement was based on
comparisons against a conventional smooth walled combustor. This evaluation was
conducted using two-dimensional finite difference Differential Equation Analyzer Program
(DEAP) combustor models of the various rib geometries. The results for these models
were in the form of two-dimensional “slices” of the hot-gas wall and combustor liner at
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Table 16: Hot Gas Side Rib Selection Matrix

HEAT BOUNDARY STRUCTURE/
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discrete axial stations. Rib designs were rated in terms of a heat transfer "enhancement
factor", relating rib potential compared to a smooth wall liner, and the steady state
temperature profile. Rating of ribs in this category resulted, as expected, in the taller ribs
being rated highest, due mainly to increased hot-gas surface area.

A comparison of heat transfer enhancement was made for orientation of the rib over the
land area or over the coolant channel. No difference in enhancement was noted. therefore,
from a heat transfer standpoint the cases are equivalent and can be interchanged. Structural
considerations will be used to select the best approach.

Boundary layer risk was evaluated based on a best estimate of boundary layer growth over
combustor wall length, taking into account the insulating effect of a "filled" rib contour,
and rib corner effects on boundary layer formation. Results reflected that wider spacing of
the ribs is best, yielding the most effective boundary layer contour with minimized risk of
heat flux degradation due to boundary layer build-up.

Producibility risk addressed the difficulty in machining complex liner geometries. Rib
complexity is driven by aspect ratio, scale and multiple contours. As expected, the larger
and simpler rib geometry types rated higher.

The structural and life considerations were based primarily on material property degradation
with increased temperature. Comparison data was obtained from the DEAP steady state
temperature profiles. These were relative temperature comparisons, since some rib tip
temperatures went well beyond material limits. Potential advances in material and cooling
technology were considered in selecting cases to be tested. Evaluation of ribs in this
category showed that the taller ribs rated lowest, due mainly to excessive material
temperatures. Again, there was essentially no difference in the rib over land and rib over
channel configurations.

A rib sensitivity study was conducted to evaluate how potential variations in hot-gas wall
film coefficient (Hg) due to boundary layer effects would impact rib temperature and heat
transfer enhancement. The results showed that Hg variations do affect heat transfer
enhancement directly, but due to a parallel effect of lower material temperature may allow
the use of taller ribs. Additionally, a study was made to determine the effect on Hg of large
temperature gradients from rib tip to trough. Results showed only a 12% change in Hg for
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a 1000 F temperature gradient, which fell well into the Hg range covered in the sensitivity
studies described above.

Of the twenty-one candidates, six best rib configurations were selected for the two lab tests
planned; 1) the hot-air calorimeter panel tests, and 2) the cold-air flow boundary layer
mapping tests. Final rib selection was based on total weighted scores for each rib type in
the four categories, plus "other factors”, such as duplication of data, and broadening of the
data base. Both boundary layer risk and heat transfer were weighted highest, due to their
direct influence on rib effectiveness. Producibility was weighted low due to the relatively
narrow range of influence it has, considering that all ribs analyzed were within the state-of-
the-art for machining processes. Structure/life considerations, though important, played a
much larger role in structural analysis studies farther along in the program. The overall
weighted rating scores gave a prioritized ranking of the candidates for the four quantified

evaluation criteria.

The selected concepts included ribs of 0.040, 0.060, and 0.080 inches in height. Two base
width values were selected for the 0.060 high rib to evaluate the impact of this parameter. A
twice-nominal pitch configuration, the 'skip rib' case, was included based on its overall
ranking and low boundary layer growth risk. Finally, a radius based design rated highly
and was also selected for technical breadth.

The six rib candidates were tested using a hot air test chamber, the components of which
are pictured in Figure 36. The test chamber was designed to test four ribbed or smooth
panels at a time to speed testing. Each panel made up a longitudinal quarter section of the
tester and had its own coolant circuit. The hot air test setup is shown in Figure 37. Typical
measured temperature rise results for each rib candidate and a smooth wall baseline are
given in Figure 38. As expected, the taller ribs produce the greatest temperature difference.

Cold flow laser velocimeter testing was also performed for the various rib configurations in
order to evaluate boundary layer velocity profiles between the ribs. These tests were
performed in the two dimensional tester shown in Figure 39. Seen in Figure 40 is the
complete test setup. The tester was designed for easy test element replacement to reduce
time between test runs. As is shown in Figure 39, multiple configurations could also be
tested without chaﬁging the test element. Figurc 41 gives the nondimensionalized scaled
results of the the velocimeter tests for each of the rib height and spacing configurations.
From these, Stanton numbers were calculated by the Reynolds analogy with a Prandtl
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correction using flat plate turbulent boundary layer equations to determine skin friction
factors. An area integration of the Stanton numbers produced heat transfer coefficient
profiles for candidate comparison.

Resulting combustor heat transfer estimates for the rib candidates from four predictive
sources are tabulated in Figure 42. The first column represents the unscaled cold flow test
results. The second column gives the hot air calorimeter test numbers. The last two
columns are predicted results from the DEAP code at hot air test and hot fire test
conditions. The hot air and cold flow test results show good agreement. The DEAP hot air
model results are lower because of cold flow Stanton number effects, and the hot fire
DEAP model shows lower values because it includes the non-isothermal rib effect predicted
for the higher actual heat fluxes.

Scaling analysis results from the cold flow velocimeter data led to the selection of the
preferred rib configuration. The highest performance was predicted for a 0.040 inch high,
0.040 inch base truncated triangular rib with a 0.020 inch tip width and a pitch of 0.0785.
Wall temperatures for this configuration were projected to be acceptable and fabricability
was demonstrated during the hot air test chamber fabrication. This recommended rib pattern
along with an alternate derived from the test data are shown in Figure 43.

Combustor Coolant Channel Selection

The objective of subtask C.2 was to evaluate alternate combustor coolant channel
geometries that would enhance the combustor liner service life. The design objective was
to maintain an acceptable wall temperature with the increased heat extraction due to hot-gas
wall ribs without excessive coolant circuit pressure drop or adverse structural efficiency.
The design approach taken was to screen appropriate channel candidate configurations,
evaluate the flow characteristics in the channels, compare the designs at hot-fire conditions,
and select the best designs for hot-fire test evaluations.

A matrix of candidate channel configurations was developed based on previous design
studies at Rocketdyne. The matrix featured channels with base fins, high aspect ratio
rectangular channels, rounded corner channels, and channels with interrupted flow fins.
The base fins were of varying width, aspect ratio, shape, and number (one or two). A
summary of these configurations is shown in Table 17.
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/—\ ' 0.040 tall - 0.040 base rib with
0.020 tip width - 0.0785 pitch

0.030 tall - 0.040 base rib with
0.020 tip width - 0.0785 pitch

Figure 43: Selected Rib Configurations
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Table 17: Coolant Side Channel Geometry Selection

Matrix

STAUCTURE! COGLANT soumcany | sacouciaiiTY HEAT
LIFK ar LAVER TRANSFER WEIOHTE
D | wWEIaMTE SELECTION SELECTION
catiqoav CranNEL GLOMETAY | 3SWIIGNTAO! 38 WEIOHTED | JOWEIOHTED | 1OWEIGHTED | 10 WEIGRTED s ‘ll:( ° RaATIONALE LLL T
AAT'G WrQ| RATO WrD| RATG WTD! ®ATG wrD! maro wrp
ALPRCY Ha .9 AR
D 2040 10 [} [ IR s w| e vou [ o N ™ " SABELING CRANNEL. .
FOK COMPAHISONS
80 PRIGHT ] wo» | 2 | 2 wi o7 ves| 10 100 | ™ s n
G Y19 32 H n o 9 ¢ 1w [ wl a w ™ 2
U 2030 a0 [] ° [ I ] . 100 v w . ™ 240 ~
D 000 10 ¢ o w180 » m| w0 100 [ 0 0 .0 v
120 HLIGHT [] a0 .0 e 0 s 1 e ] nl P e "
ﬂ 038 ‘e e ® [RERY ' . I [} o] s ™ at a
.
[] V-] Y] e 0 e o s v} 8 o] s = %0 n
~ 040 FR ) ¢ 4 19 240 ¢ 1l o] o ° s 1
140 & IGHT 2030 7] e 0 (LY 1 1w) w| “ 510 "
o [ s s 200 [T [ 0wl s © ™ n
« 008 . e 9 3 " s 1@ . w| o © 3. n
PN GEOM. AR
Ha !IN&'L! Fid U 016a 010 15 ? 148 7 1.7e 4 L] L ” L] 0 §.10 ? HARNOW Fiig
ALSO 1N DUAL
FinGEOM'S
¢ STARDARD 080s m BMa010 14 T r 1w 2 »w ] w4 « s ] (AT W)
CranmiL
m Qe is 18 s 1 1o 3 ] ’ w| a “ (¥ s 0EST OF SINGLE 3
FIN
t] 0iaa 048 18 [ ] 10 [ 1 136 1 -« [ ] ® 4 0 [ X1 [} ) wiDE Fik STWOY b
TAZLAED [‘_’] D14 GIW 182 s 1m [REY ' 0 L) . wl e “ s00 . ‘.
™ 210 T TAPERED Fiiv
sTuov
U oAy 137 s  m [T ] “ 1 wi 4 u ™ %] .
018 YW -
ne Dua Fin
OB0s 060 CHANMNEL D ol8a01@ V8 w o ie [ ¥} 3 @ s w| » ” 138 ' WEST OVERALL v
m a3endi® 14 W s v n 2 wl w | o ®© 78 2 :
W COMRNER RaOH O [ ) ° [ [ ] n ] 190 [] = s s e »
a20m
U 0152010 FIN ? .48 ’ 17 . g 4 40 4 < .80 11} PLOW STUOY &
008-.010R
w rou!uunou 1N GlOm
NN
4 STANDARD 080 & U D [j 0182098 1 1.4 20 ) 1 wi 4 % [E .
ouannen O N FLOW EFFECTS
* 2 CRANNTLS/RIS. m D 834018 a  2m [ 3 = 5 o] 4 - s . CHARACTRHIZED
41 UNOER RIS N CATIGONY
oney D D feasin s m| & 1W| 2 ” ? nl e «© [ 3 LitA B ig
SELECTIONS
m D U 0152 024 1% ' (R 7 . [} w . “ (3 1L}
W INTER T
[ ¥ s 1m]| o » ° s . © .00 17 PRODUCIMLITY
SAWTOOTH™
(vAMATION OF
NGLE F )

80




These candidates were screened by relative rating for temperature reduction capability (life),
pressure drop, boundary layer build-up risk, producibility, and heat transfer enhancement.
Heat transfer analyses were conducted using a two-dimensional computer model using
fully developed flow characteristics in the channels. Results of the thermal analyses, and
evaluations in the other categories, were used to select the eight configurations labeled in
Table 17 for laboratory testing.

A cold flow velocity profile mapping test series, using the same fixture as the cold flow rib
series, was conducted for the chosen channel configurations. The test fixture in the coolant
channel configuration is shown in Figure 44. The air flow velocity data were analytically
scaled to hot-fire conditions to evaluate channel pcrformanée. Predicted liner temperature
changes for four configurations plus a reference smooth wall case are seen in the graph in

Figure 45.

Three enhanced channel configurations were selected for possible hot-fire evaluation in the
next program phase. Two were evaluated as part of the eight coolant channel candidate test
matrix. They were the single high fin and the single low fin. Another channel concept, a
high aspect ratio channel, was analyzed concurrently with those in the test matrix. It was
not tested, but by analytical calculations was found to have a lower pressure drop. For that
reason it was also recommended for further investigation. The three chosen channel types
are pictured in Figure 46.

Combustor Calorimeter Experiments

A combustor calorimeter was fabricated to determine the heat transfer enhancement factor
of a ribbed wall combustion chamber in subtasks C.4 and C.5. Results from subtask C.1
were used to define the geometric rib configuration for maximum heat transfer at acceptable
life and structural limits. An existing Integrated Component Evaluator (I.C.E.) thrust
chamber assembly was modified to accept the calorimeter and was installed into a test stand
at the Advanced Test Propulsion Facility of Rocketdyne's Santa Susana Field Laboratory.
A layout of this test assembly is depicted in Figure 47. The actual ribbed calorimeter
section is pictured in Figure 48.

The 0.040 in. ribbed combustor calorimeter underwent a total of four steady state tests both

in ribbed and smooth wall combustor configurations. The tests were conducted at 800 and
1000 psia chamber pressures with mixture ratio excursion sweeps between 5.0 and 7.0.
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0.040 wide - 0.080 tall channel with
0.015 wide - 0.024 tall fin

0.040 wide - 0.080 tall channel with
0.015 wide - 0.015 tall fin

0.020 wide - 0.080 tall high aspect
ratio channel

Figure 46: Selected Channel Cohfirgurétions
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Figure 48: 0.040 Inch Ribbed Circumferentially Cooled Calorirﬁeter
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The heat transfer results from the ribbed calorimeter 800 psia P¢ test indicated that the
mixture ratio excursions affected heat loads significantly. The mixture ratio varied from
4.0 to 5.6 and increased heat loading approximately 1.92 BTU/in2-sec. per mixture ratio
change of 1.0 (O/F). This data is given in Figure 49.

The heat transfer data from the 1000 psia P¢ testing indicated that the heat load rate,
although greater, followed the same pattern as the 800 psia P tests. The calorimeter test
results indicated that the ribs caused a 50% increase in heat transfer for 800 psia chamber
pressure and a 40% increase at 1000 psia (normalized for mixture ratio, the 1000 psia test
enhancement is greater than that of the 800 psia P¢ test). The heat loads vs chamber
position for the ribbed and smooth calorimeters can be compared in Figures 50 and 51.

The projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 kibf
nominal thrust level, was a 58% increase in heat transfer rate, which translated to a 46%
increase for a full size 15k combustor. The Enhancement factors for these hot fire results
are compared with the corresponding two dimensional enhancement factors in Figure 52.
Enhancement factors for a 16 inch ribbed barrel and a 20 inch full combustor are projected
in Figure 53 from the hot fire data for a range of chamber pressures at a mixture ratio of
6:1.

TASK E - ICHM AND PREFLIGHT METHODS

The objectives of Task E dealt with control and maintenance systems for the OTVE. After
a preliminary design of the OTVE, a control scheme was devised for engine operation
including start-up and shut-down sequencing. Methods of thrust and mixture ratio control
were decided, and the necessary valves were incorporated into the system in the Task D
efforts. Health monitoring functions were also introduced into the control system for
greater reliability and more timely maintenance. Elements of the ICHM system were
identified and component development costs were calculated for each element. Some of the
condition monitoring processes were then developed through test programs. Methods of
preflight engine checkouts with varying degrees of sophistication were also evaluated.
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x
Fiberoptic Shaft Monitoring

Shaft dynamic behavior is a critical parameter in evaluating rocket engine turbopump
component condition. Wear, erosion, spalling, pitting, and other surface degradation
processes result in measurable changes to shaft dynamic motion. The measurement and
interpretation of characteristic shaft motions can provide vital data for determining which
components may be degrading, and to what extent the degradation has progressed.

In subtask E.5, a turbopump shaft monitoring system using fiberoptic sensors was
designed. The system was intended to monitor shaft axial displacement, shaft orbit and
shaft speed at up to 200,000 rpm. To provide these optical measurements, a method was
developed to use a surface pattern on the shaft to modulate light as a function of shaft axial
and radial motion, and speed. A fiberoptic deflectometer was adapted for use as the optical
sensor. A suitable pattern was found to be eight triangles of non-reflective material whose
change of reflectivity from that of shiny titanium shaft modulates the light intensity received
by the deflectometer. This pattern is shown in relation to deflectometer position in the
demonstrator schematic given in Figure 54. The modulation in light intensity, and the
associated time periods of the change in intensity, indicated shaft axial and radial position
and shaft speed. The method of displacement detection is explained in Figure 55.
Extraction of these measurements was accomplished in a series of tests by a signal
processing unit. The signal processor was designed to take the output of two orthogonal
fiberoptic deflectometers which view this pattern, and to provide real-time voltages related
to the amplitude of X,y and z motions, as well as speed.

This project required: (1) adaptation of the deflectometers to be used as the optical pickup,

(2) development of a technique for economically applying a precision pattern on the shaft,
(3) selection of an appropriate shaft surface treatment for placement of the pattern, and (4)
development of an electronic signal analyzer to process the modulated deflectometer signal

for extraction of the shaft motion and speed information. '

Tests demonstrated the shaft monitoring system up to 10,000 rpm. The optical sensors
were constructed for use in a 200,000 rpm LH?2 environment, and are ready for

turbomachinery testing. The only remaining concerns are degradation of the reflection
pattern due to oxidation or abrasion, and reflection intensity variations due to transmission
through a two phase medium.
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Combustor Wall Condition Monitoring

The scope of this additional subtask E.5 effort was to identify and evaluate condition
monitoring technologies capable of nondestructively measuring wall thickness and the
extent of cooling channel "doghousing" in test specimens emulating conditions which may
exist in the throat region of the OTVE main combustion chamber after multiple firings.
These measurements could then be correlated to the remaining combustor life, and be used
to predict the overhaul schedule and requirements.

A literature search was performed resulting in thirteen candidate sensor technologies, which
were initially evaluated against wall thickness measurement criteria such as thickness range,
thickness and channel resolution, accuracy, and the simplicity of the measurement. From
these criteria, three technologies -- ultrasonics, eddy currents, and electromagnetic acoustic
transduction (EMAT), a noncontacting, couplant-free ultrasonic technique -- were selected
for laboratory testing.

Transducers for measuring up to a 20-mil thick wall of copper with single channel
resolution, were custom-designed and procured. Transducer fixtures were also designed
and fabricated to provide for accurate, automated scans of the test specimens. Additionally,
electromechanical translators were designed and fabricated to move the transducers at
selected speeds across the specimens, and to monitor time and amplitude signals.
Automated scans were then performed on a curved SSME combustor segment and
channeled copper and Narloy-Z plates with 20-mil land/channel widths and wall
thicknesses simulating OTVE combustor throat conditions.

Conventional ultrasonics easily distinguished between good channels, lands, and cut-
through channels, providing a high-contrast amplitude signal. However, in its present
configuration, its immersion or liquid couplant requirements inhibit its implementation for
space-based applications. The test apparatus necessary for the ultrasonic testing is sketched
in Figure 56. Output correlations with a test sample are shown in Figure 57.

Eddy current techniques were then tested and found to readily resolve a 0 - 10 mil thick
wall thickness, and up to a 20-mil thick wall when not adjacent to thin-walled channels.
This technology also provides a high-contrast signal for wall thickness measurements, and
has the added feature of not requiring couplants. Eddy current traces for copper and
Narloy-Z test pieces show strong signals at thin walled areas in Figures 58 and 59.
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Figure 59: Differential Eddy Current Scan Showing Strong

Signals From Three Thin Wall Channels
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The couplant-free ultrasonic EMAT technology was also tested. A cutaway view of an
EMAT is seen in Figure 60. Results showed that the EMATS could easily resolve signals
from a single channel, but that additional data processing algorithms are required to correct
for acoustic interference caused by multiple, consecutive channels. This effect is illustrated
in Figure 61. Once this is performed, EMAT signal amplitude can be correlated with wall
thickness to provide a second couplant-free combustor wall thickness measurement

technique.
ICHM Elements

The ICHM system was to provide comprehensive control and monitoring capabilities in
support of overall OTVE mission requirements. OTVE missions included requirements for
long duration space exposure and multiple, zero gravity engine starts, as well as the
capability for deep throttling for landings. A list of ICHM requirements and the minimum
ICHM system functions from which they were derived are listed in Figure 62. More
specifically, reusability requirements dictated a service-free life of 20 missions, with 100
starts and a total engine operational time of 4 hours. The overall system life (with service)
requirement is established as 100 missions, with 500 starts and engine operational time of
20 hours.

The resulting ICHM system was defined in subtask E.6 and included control and condition
monitoring electronics, sensing elements, software/algorithms and effectors. Effectors
were those components of the ICHM which were commanded by the controller electronics
to operate the OTV engine. These included valve actuators, nozzle extension and
gimballing actuators and igniters. The ICHM architecture incorporating all these elements
is depicted in Figure 63.

Individual sensor types were chosen to fulfill the specific ICHM functions. The sensor
technologies selected for each of the sensor types are given in Table 18 along with their
various attributes. Locations on the OTVE where these sensors are used by the ICHM
system are labeled in Figure 64.

The technical readiness and development costs of the ICHM system were also calculated in
subtask E.6. The minimal ICHM system was derived from a flowdown of engine
requirements into system functions. These were evaluated and translated into a minimum
set of ICHM elements (sensors, actuators, electronics, and software) to meet the
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ICHM Minimum Functions

ICHM Requirements

Start and Cutoff in Zero-G

Throttling

Performance Requirements

Single Engine Reliability

Dual Engine Reliability
Service Free Life
®| Space Based

Robust Engine Out Capability

Start

Pre-Start Checkout

Engine Conditioning

o|®]| Nomimal Engine Operations

Start Ready Verification

Tank Head Sequence

Tank Head OK Verification

Pump |dle Ready Verification

Pump ldle Sequence

Pump Idle OK Verification

Main Stage Ready Verification

Main Stage Transition

Main Stage OK Verification

Start Transient Abort Sequences

Mainstage

Closed Loop, Proportional Thrust Control

Closed Loop, Proportional MR Control

Muiti-Variable (Coupled) Thrust/MR Control

Propulsion Level Thrust Vector Control

Management of Coolant Resources

Shutdown

Mainstage Cutoff Sequence

Engine Safing

Passive Cutoff System

Retractable Nozzle Control

Safety
Monitering

Redline Monitoring

Failure Detection/Accom Algo/Model

Condition
Monitoring

Maintenance Algorithms

Control System Fault Detection

Post Hot-Fire OK Verification

Figure 62: ICHM Requirements and Corresponding Functions
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requirements with the highest possible technology readiness. A baseline design for each of
these elements was then described in enough detail to estimate the technology readiness and
development costs of the minimum system. These costs are tabulated in Table 19.

Automated Preflight Checkout

A space-based chemical propulsion system capable of multiple starts and varied mission
scenarios would require extensive preflight checkouts to assure crew safety and mission
success. An automated approach for a space-based OTVE preflight checkout system was
highly desirable from the standpoints of reliability and feasibility. Such a system was
analyzed in subtask E.7.

Approaches to automating preflight readiness checkouts depended heavily on condition
monitoring technology to provide the information required to assess the engine's readiness
to fire. Condition monitoring sensors would permit remote monitoring of critical
components as the engine fires during normal operation. Based on the flight data obtained
from these sensors, an assessment could be made on the condition or health of a particular
component which in turn would dictate the need for maintenance procedures or
replacement. This study evaluated various methods of preflight readiness checkouts in the
context of a space-based system. Where required, methods incorporated advanced
Integrated Control and Health Monitoring (ICHM) technologies enabling rapid and remote
engine turnaround.

Preflight readiness verification requirements were established for the engine. Requirements
were based on previous logistics studies including the preliminary FMEA and the flow task
analysis report. The requirements are listed in Table 20. This work supported previous
efforts to establish the operational flow of the engine and idéntify the applicable
maintenance tasks for both current and advanced technology hardware. The operational
flow tasks of interest to this study were those executed after delivery to the space station
and before return to earth. Maintenance tasks were reviewed in light of the SSME
Operations and Maintenance Requirements and Specifications Document which reflected
the current inspection and checkout philosophy evolved from the Challenger incident.
Thirty six preflight readiness verification requirements were identified for the engine.
Requirements included 14 functional checks, 10 leak checks, 10 inspections, and 2

servicing tasks.
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Several approaches for remotely performing readiness checkouts in space were outlined for
each preflight requirement. The range of approaches reflected a variety of method
sophistications. Three approaches for remotely obtaining data were considered: (1)
preliminary power-up, in which the engine is fired for a short time to acquire real time data,
(2) automated component pre-cycling, in which engine components are cycled in an inert
gas medium to assess component integrity without hot firing the engine, and (3) automated
static checkout, in which an analysis of historical data and static checks are used to assess
the engine's readiness to fire without the cycling of any components.

Issues and benefits were generated for each of the three preflight checkout approaches.
Sensors and flight hardware, alternate component designs, and general approach were all
addressed. Issues and benefits were categorized into space basing, vehicle infrastructure,

and engine system impacts.

The technology readiness levels of the three preflight checkout methods were also evaluated
as shown in Table 21. The scale used for comparing the methods was that used by the
NASA office of exploration for evaluating options for future mission choices, given in
Table 22. Estimates were also made for the remaining cost to advance the technology for
each method to a level 6, where the system validation models have been demonstrated in a
simulated environment. These costs are itemized in Table 23 and totaled for the different

methods and technology levels in Table 24.

Table 21. Method Readiness Assessment
Average Sensor | Mimimum Sensor | Overall System
) Readiness Readiness Readiness

Preliminary Power Up 5.0 4 5
Automated Component 4.9 4 4
Pre-cycling

Automatic Static 5.0 4 4
Checkout

TASK F - ENGINE TEST FIRINGS

A 15,000 Ibf thrust, pump-fed liquid oxygen/liquid hydrogen, advanced expander cycle
rocket engine identified as the RS-44 Integrated Component Evaluator, was designed and
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Table 22: Technology Readiness Level Definitions

Level 7

System validation model demonstrated in
space; system ready for space-based
applications

Level 6

System validation model demonstrated in
simulated environment; test of an
equivalent of the final system configuration

Level 5

Component and/or breadboard
demonstrated in relevant environment

Level 4

Component and/or breadboard
demonstrated in laboratory

Level 3

Analytical and experimental
proof-of-concept for critical function and/or
characteristic; conceptual design test

Level 2

Technology concept/application formulated,
conceptual design drafted

Level 1

Basic principles observed and reported
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Table 23: Element Development Costs

Summary of Development Cost

Elements by Task*

Sensor Development
Delta Software Development
Maintenance Data Base + Optimized engine

« Not optimized engine

Process Software « Optimized engine
« Not optimized engine
Delta Computer Hardware Development
Soft Simulation
Hard Simulation
Integrated Sensor/Computer System Brassboard

OTVE Modification (for Cat. 2 only)

AETB Test Support

(M$, 91)

0.5t08.0

3.5
4.6

2.4

3.6

2.5

0.7

8.0

4.0

2.3

2.4

* These costs are not additive. The proper elements are combined for

4 different cases as shown in Table 24.
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fabricated between the years 1982 to 1985 using Rocketdyne discretionary funds. The ICE
system was conceived to demonstrate the performance and operational characteristics of an
advanced expander cycle rocket engine and its components.

During the year 1985, component testing of the ICE turbomachinery was accomplished
with Rocketdyne funds to characterize the individual pump performance capabilities as well
as startup transient control of the turbopumps. The turbomachinery employed in the ICE
were the Rocketdyne MK49-F high pressure liquid hydrogen and the MK49-O high
pressure liquid oxygen turbopumps shown in Figures 65 and 66 respectively. The MK49
turbopumps were installed on the ICE during the component tests with propellants by-
passed to overboard drains and burn stacks. This scheme permitted the installation of the
entire engine system, requiring little down time to convert from turbopump component

testing to engine testing.

Nineteen successful turbomachinery checkout tests were conducted, including head versus
flow excursions at various power levels. Transition data from these tests determined the
component start sequence transients. A balance piston capability issue also surfaced during
the MK49-F hydrogen turbopump component testing. The balance piston position
calculations indicated a progressive closing position as the speed increased, therefore the
safe rotor speed limit of the MK49-F turbopump for balance control was set at 87,000 rpm.

Once the turbopump testing was accomplished, testing of the ICE under Task F of this
contract, NAS3-23773, began. An engine sub-system checkout methodology was
employed to gradually transition into full engine test operations. Thirteen tests from early
in 1986 to January 1987 were performed. For these engine system tests, the turbopump
propellant discharges were routed into the ICE thrust chamber assembly instead of the
drains and burn stacks previously employed. Figure 67 shows the elements comprising the
ICE thrust chamber assembly; the tapered combustor, the sea level 35:1 area ratio test
nozzle, the plasma torch igniter and the coaxial injector elements. Figure 68 shows the
complete ICE engine installed in the NAN stand of the Advanced Propulsion Test Facility
at the Rocketdyne Santa Susana Field Laboratory.

A summary of the first seven tests conducted under Task F is presented in Table 25.

Igniter valve sequencing was based on the results of a previously conducted igniter test
program. The sequencing resulted in nearly simultaneous entry of the GO and GH? into
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the igniter and provided successful igniter ignitions in all six tests where ignition was
attempted.

The successful oxidizer and fuel blowdown tests (001 and 005) defined the priming times
for each propellant in the main injector. The main propellant valve sequencing they defined
resulted in propellant ignitions on both attempts (tests 006 and 007). The main oxidizer
and fuel valves were opened in the first part of the sequence with the turbine bypass valve
(TBV) closed to accelerate the start and the oxidizer turbine bypass open as required by
steady state target conditions for these tests. The TBV was later sequenced to a control
position to limit chamber pressure. The TBV was commanded to ramp to 34 percent and
begin to open on test 007 but cutoff was initiated before it became significandy effective.

Table 26 presents the remaining six engine systems test results. They provided-a short
transition into main combustion chamber ignition and finally into mainstage operation.
Thermal equilibrium of the engine system was calculated to occur at about 10-seconds run
time. Therefore, to conserve engine operation time and lower propellant and test costs, the
mainstage tests were held to a maximum 10-second duration.

Tests 017-003, 017-005 and 017-006 demonstrated expander cycle operation: ignition,
transition, steady state mainstage and shutdown. The highest fuel turbopump speed
(87,400 RPM) was achieved on test 017-006 where the maximum test chamber pressure of
776 psia was also recorded. This chamber pressure was almost twice the current 400 psia
operating point for expander cycle engines (RL10).

In test 017-006 the fuel turbopump #4 (turbine end) bearing failed, precluding any further
testing. This fuel turbopump anomaly may be be the result of a technology issue requiring
resolution and culminating in internal design changes. Operation of all components
excluding the fuel pump was satisfactory, however, during the tests. The oxidizer
turbopump performed as predicted and the thrust chamber assembly resistances and heat
loads appeared nominal. Since the engine system was an expander cycle, the failure
consequences were rather benign and the shutdown was safe with no other secondary

failure occurrences to the engine.
Both nominal and emergency shutdowns were achieved without causing any damage or

distress to any system component. Unplanned fuel stoppage generally results in thrust
chamber burnout or severe thermal distress. Neither of these resulted when the fuel pump
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Date

1-15-87
017001

1-23-87
017001

1-23-87
017002

1-23-87
017002

1-28-817
017004

1-28-87

017005

1-28-87
017006

Table 26: 1.C.E. Engine Systems Test Log

Test Objectives

Test Results*

Fuel pump speed
c/o at 75000 RPM

Fuel pump speed
c/0 at 75000 RPM

Igniter only.

Fuel pump speed

c/o0 at 75000 RPM.

Fuel pump speed
¢/0 at 75000 RPM

Fuel pump speed
t/0 at 75000 RPM

7.5 sec duration

Test terminated
before sequence
start due to prep
complete dropout.
GHy opening
pressure loss on
LHy D/S bleed
when Lox D/S bleed
closed. GHp D/S
valve open micro
switch dropped out.
Fire started from
LHp Teak at LHp

pump U/S bleed valve.

Test terminated at
1.08 sec. when
igniter PC failed
to reach 120 PSIG
min R/L PR.

Igniter fired as
planned.

Test terminated at
2.01 sec due to
combustor PC

250 PSI.

Test terminated at
1.08 sec when
igniter PC failed
to reach 120 PSIG
min R/L PR.

Test terminated as
planned at 2.9 sec.

Test terminated at
5.75 sec when

FP BAL PIST CAV PR
dropped below R/L
value of 1525 PSIG.

* A1l times relative to MFV starting to open.
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Remarks

GNp valve control pressure
source replumbed. Valve stem
packings tightened and purges
increased. No engine or

facility damage from fire.

GH, and GOX pressures were
at correct values.
Visual spark check o.k.

Redline value set too tight
for PR rise rate. Reset R/L
time to 2.5 sec.

Made GHz and GOX blowdowns.

Visual spark check o.k.

77000 RPM
675 PSIA

NF
PC

Pressure decay due to
loss of FP speed.

NF = 87000 RPM

PC = 775 PSIA



speed and pump pressure abruptly decayed. Visual inspection of the injector and thrust
chamber show absolutely no evidence of heat distress due to the emergency shutdown.
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